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Abstract

We consider a series of n single-server queues. each with unlimited wanting space and the

first-in first-out service discipline. Initially, the system is empty: rthen k, customers ame placed

in the first queue. The service times at all the customers at all the queues are id. with a

general distribution. We show, under appropriate conditions, that the departure process from

the nth' queue satisfies an invariance principle. converging as n --+ m after normalization to a

reflected Brownian motion (RBM). As a consequence. the first k interdeparture times from

queue n after the first departure ame of order 4-n as n -# m. Moreover, we estabLish a strong

approximation showing that the maximum error in the RBM approximation for k, - n' with

a > 0 is of order n 0-*lgn We then apply the subadditive ergodic theorem to the

limiting RBM to show that the average of the first LxndJ interdeparture times from queue n

after the firs deparrue is oforder n~~' for 0 : a < I arid z 0. Finally. we apply the

subadditive ergodic theouem again to establsh a hydrodynamic limit: i.e.. we show that the

average of the first Liii interdepmnwir time from queue n converges almost surely to a finite

limit asa --oa foreach z , 0.
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1. Introduction and Summary

In this paper we consider a queueing model that could be used to represent the start-up

behavior of a long production line or the transient flow of messages over a long path in a

communication network. In particular, we consider a series of n single-server queues, each

with unlimited waiting space and the first-in first-out service discipline. Initially, the system is

empty; then k. customers are placed in the first queue. The service times of all the customers

at all the queues are i.i.d. with a general distribution having mean 1 and finite positive

variance a2. Our object is to describe the departure process from the n h queue as n gets large.

(Equivalently, since customers are served in order of arrival, we can consider infinitely many

queues in series with infinitely many customers in the first queue; we are still interested in the

departure times of the first k, customers from the n h queue as n -- a.) We may have k,,

constant, independent of n, or k,, --) o as n --* o.

Let D(k, n) be the departure time of customer k from queue n. Let =* denote

convergence in distribution or weak convergence, as in Billingsley (1968). Since D(1, n) is

just the sum of n service times,

n- [D(l, n) - n] = N(O, 02) as n --- c (1.1)

where N(m, a 2 ) denotes a normal random variable with mean m and variance C2. However,

we are primarily interested in the interdeparture times between successive customers after the

first from queue n. Let D(k, n) be the average of the first k interdeparture times from queue n

after the first departure, i.e.,

D(k, n) = [D(k + 1, n) - D(l, n)]/k . (1.?)

Let x. denote the integer part of x. Here is what we regard as our main result.

Theorem 1.. Suppose that the service times are i.i.d. with a general distribution having an

exponential tail. Then, for x > 0 and 0 5 a < 1, there exists a proper random variable L. (x)
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such that

n-(l1O)- 2 D(xnaJ, n) => La(x) as n -- cc . (1.3)

Theorem 1.1 implies that the average of the first Lxnaj interdeparture times from queue n

after the first departure is asymptotically of order n(I - a) / 2 as n increases. A statement in terms

of the departure times that can be shown to be equivalent to (1.3) is

n-(l+a)/2[D(Lxnaj, n) - n] => L',(x) as n -+ cc , (1.4)

where L'(x) = x L (x) for 0 < a S 1. (The relationship between L'o(x) and Lo(x) is more

complicated.)

Our primary focus is on the early departures from a large number of queues. For example,

the customer index k. associated with n queues might be k, 'n4 or n. However, there is a

duality discussed in Section 2 that makes our results also applicable to a large number of

departures from relatively few queues. In particular, under our i.i.d. assumption for the service

times,

d
{D(i, j) : 1 <5 i <5 k, 1 <5 j <5 n} f {D(j, i) : 1 <5 j <5 n, 1 <5 i . k} (1.5)

d

where = denotes equality in distribution. Hence, associated with (1.3) and (1.4) are dual

statements about the departure time of customer n from queue k.. For example, as a

consequence of (1.4), we obtain the following corollary.

Corollary. Under the conditions of Theorem 1.1, there exists a proper random variable L: (x)

such that

n-(l+a)/2(D(Lxnaj, n) - LvxnaJ) =- L*(x) as n --- cc (1.6)

forx > 0anda > 1, where
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L (x) = x-(i + a)12L'-' (x-ila) , (1.7)

so that

D( LnaJ, n)/.xnaJ -- I as n -* (1.8)

Three rather distinct cases are combined in Theorem 1.1: (i) a = 0, (ii) 0 < a < I and

(iii) a = 1. We treat the first case with a = 0 by establishing a functional central limit

theorem (FCLT) for the departure process from queue n (Theorem 3.2); we treat the second

case 0 < a < I by establishing a strong approximation generalization of the FCLT and

applying the subadditive ergodic theorem as on p. 277 of Liggett (1985) to the limiting RBM

(Theorem 7.2); we treat the third case by directly applying the subadditive ergodic theorem

(Theorem 6.3). In the first case with a = 0, L. (x) is a nondegenerate random variable, but in

the other two cases La(x) is detemiinistic. In the third case with a = 1, we establish almost

sure convergence. Unfortunately, we do not yet know much about the limits in (1.3), (1.4) and

(1.6). For a < 1, the limit La(x) depends on the service-time distribution only through its

first two moments. For a = 1, we conjecture that La(x) depends on the service-time

distribution beyond its first two moments.

This paper was largely motivated by Srinivasan (1989), who applied results of Rost (1981),

Andjel (1982), Andjel and Kipnis (1984), Kipnis (1986), and Benassi and Fouque (1987) about

interacting particle systems (in particular, the zero-range process and the asymmetric simple

exclusion process) to describe the hydrodynamic limit for our model in the special case of

exponential service times (stil with mean 1). Roughly speaking, the hydrodynamic limit says

that the average queue length among the first [xt] queues at time t is asymptotically almost

surely (a.s) equal to (2 - NFx)/Jx- as t - **. Consequently, the average queue length

among queues in the neighborhood of queue [xt] is asymptotically a.s. (1 - as

t- 00. (Note that the total number of customers in the first LxtJ queues is
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(2Vx - x)t + o(t); then differentiate with respect to x. In the unsaturated case with external

arrival process having rate X < 1, asymptotically a.s. the first (1 - )2t queues reach

equilibrium at time t as t -4 *c, but the rest of the density profile remains the same.)

It is easy to apply Srinivasan's hydrodynamic limit in the saturated case (with i.i.d.

exponential service times having mean 1) to deduce that the departure time of customer Lxnj

from queue n is asymptotically a.s. (1 + x_)2n + o(n); see Section 6. Thus the departure

times of customers 1 and n from queue n are a.s. n + o(n) and 4n + o(n), respectively. To

put this result in perspective, if customer n only had to wait at the first queue (as would be the

case if all queues after the first had infinitely many servers), then the departure time for

customer n from queue n would be a.s. 2n + o(n). Hence, the additional delay experienced by

customer n in the last n - 1 queues is approximately equal to his delay in the first queue plus

the sum of his service times.

Our case (iii) of Theorem 1.1 with a = 1 extends Srinivasan (1989) by establishing a

hydrodynamic limit for general service-time distributions. As suggested by the discussion

above, limits for the average queue length among the first LxtJ queues at time t as t .- 00 are

equivalent to limits for n-'D(LxnJ, n) as n -+ o0, so case (iii) of Theorem 1.1 yields a

hydrodynamic limit in the sense of Srinivasan (1989) for general service-time distributions.

With regard to the interacting particle system literature, our result is interesting because the

associated vector queue-length process depicting the number of customers at each queue

(including the one in service, if any) is not Markov here. We treat this case by applying the

subadditive ergodic theorem together with an upper bound based on a stochastic comparison

involving associated random variables and the Cramer (1938)-Chemoff (1952) theorem about

large deviations, e.g., see Vanderbei and Weiss (1988) or pp. 3.7 of Varadhan (1984).

However, we have not yet identified the limit for general service-time distributions.
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We also complement Srinivasan (1989) by describing in more detail what happens at the

front of the "wave" of customers passing through the network. Of course, the first customer

departs from queue n at time n with a deviation of order -n, as indicated in (1.1). The first

case of Theorem 1.1 with a = 0 reveals that the first k interdeparture times from queue n after

the first departure are each asymptotically of order vn as n -4 ,.. Consequently, by the time

customer k has reached queue n for large n, customer k rarely has to wait. We treat this case

by showing under appropriate conditions, that the departure process from the nth queue obeys

an invariance principle or functional central limit theorem (FCLT). The FCLT supports

approximating the beginning of the departure process, after appropriate normalization, by an

infinite-dimensional reflected Brownian motion (RBM) on the infinite-dimensional orthant

[0, oo). This infinite-dimensional RBM is the natural extcnsion of finite-dimensional RBMs

considered by Harrison (1978), Harrison and Reiman (1981a,b), Reiman (1984) and Harrison

and Williams (1987a,b).

The invariance principle implies that the approximation depends on the service-time

distribution only through its mean and variance. Moreover, the mean and variance play a

relativcly trivial mie. In particular, the mean service time only determines the deterministic

rate customers flow through the queues; without loss of generality, we can let the mean service

time be one, and we do. The service-time variance only appears (via its square root) as a

constant multiplicative factor in front of the multivariate RBM associated with service-time

variance 1. Hence, just as with the familiar one-dimensional Brownian motion (BM)

approximation for partial sums of i.i.d. real-valued random variables, there is essentially only

one fundamental limit process for this system for all service-time distributions. We call this

limit process the departure RBM.

The model we consider has no exte.'l xrrival process, but the s,... model can be

interpreted as starting out empty with an external arrival pi-ocess. Simply interpret the
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departure process from the first queue as the external arrival process. Of course, the

assumption that the service times be all i.i.d. implies that the interarrival-time distribution must

then be exactly the same as each service-time distribution. However, this is not required for

the FCLT. The FCLT remains unchanged if the service-time distributions at an initial finite set

of queues are different. (The stated results cover this generalization.)

To obtain further insight into the first appearance of congestion, we establish a strong

approximation that shows that the error in the RBM app-ximation for the first [xnaJ

customers is O(n(a - v) log n). We also show that the error in the RBM approximation is

asymptotically negligible compared to the size of the first Lxnaj components of the RBM. To

obtain this result we also need to describe how the components of the departure RBM grow.

Let D k (1) denote the k'h coordinate of the departure RBM at time 1. We apply the

subadditivc ergodic theorem again to show that

k- 'Dhk(l) = LI(1) as k - c (1.9)

for LI(1) in (1.3); see Theorem 7.1. We thus obtain Theorem 1.1 for 0 < a < 1; see

Theorem 7.2.

The rest of this paper is organized as foliows. Li Section Z' we revicw a :onvenient

representation for the departure process tha facilitates its study. In particular, we exploit the

fact that the departure time of customer k from queue n can be represented as the maximum

partial sum of service times along nondecreasing paths of length k + n - 1 in a k x n lattice of

service times. From this representation, the duality mentioned above is immediate.

In Section 3 we establish the FCLT and in Section 4 we establish the strong approximation

needed for case (ii) of Theorem I. I with 0 < a < I. In Section 5 we establish stochastic

order relations among the interdeparture times, which are of interest in their own right, but also

help us describe the departure RBM and treat the case k,, = 0(n) in Section 6. In Section 6
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we obtain our hydrodynamic limit, i.e., we treat the case k, = LxnJ. In Section 7 we

establish (1.9) and the third case of Theorem 1.1. Finally, in Section 8 we make some

concluding remarks.

We end this introduction by mentioning some additional rcferences that provide background

or treat somewhat related problems: Chapter 6 of Disney and Kiessler (1987), Kelly (1982,

1984), Suresh and Whitt (1990) and Vere-Jones (1968).

2. The Basic Recursion for the Departure Epochs

Let V(k, n) be the service time and D(k, n) the departure time for customer k at queue n.

Our starting point is a basic recursion for the departure times,

D(k, n) = max{D(k - 1), n), D(k, n - 1)} + V(k, n) (2.1)

for k I ard n Z 1, with D(k, 0) = 0 for all k and D(0, n) = 0 for all n, which can be

taken as the definition. (At this point, we do not assume that the service times are i.i.d.)

We can easily express D(k, n) more directly in terms of the service times. To do so, let

rl(k, n) be the set of all "nondecreasing continuous paths" of length k + n - I from (1,I) to

(k, n) in the set of ordered pairs ?P a {(i, j) : 1 < i S k, 1 <5 j n}; i.e., nt E I(k, n) if it

is a subset of ? of cardinality k + n - I containing (1,1) and either (i + 1, j) or (i, j + 1),

but not both, whenever it contains (i, j). Since successive ordered pairs in any such path it

increase in the first component exactly k - I :imcs, there are {k +n 2 paths in rl(k, n).

From (2.1), we easily establish the following by induction.

Proposition 2.1 For all k > I and n > 1,
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D(k, n) = max {D(k - 1,1) + L V(k,j)} (2.2)1 S I S:^ s

k

= max {D(l. n - 1) + . V(i, n)} (2.3)
1 I ! k

= max { V(i, j)} . (2.4)n rl(k, A) (i, j)E e

Evidently Proposition 2.1 is quite well known; e.g., formulas (2.1) and (2.3) appear as (1),

(2) and (16) of Tembe and Wolff (1974). A variant of (2.4) for queues without extra waiting

space appears in Muth (1979). As Muth observes, (2.4) implies that the departure times

D(k, n) are unchanged if we reverse the order of the queues and the order of the service times

at each queue. Let superscripts index different models.

Corollary 1. If V 2(i, j) = V' (k - i, n - j) for 1 < i < k, 1 !5 j 5 n, then

D2 (k,n) = D1(k,n).

d
Formula (2.4) also implies a certain duality, i.e., symmetry in k and n. Let = denote

equality in distribution.

d
Corollary 2. If {V 1(i, j) : 1 S i5k j < n} {V 2 (j,) : 1 !5 i S k, I S j < n,

then

d
{D'(ij) : 1 5 i < k, 1 :5 j 5 n} = {D 2 (j,i) : 1 5 i < k, 1 j < n}

As an immediate consequence of Corollary 2, we obtain the following result in the i.i.d.

setting which is of primary interest to us.

Corollary 3. If V(i, j), 1 :5 i 5 k, 1 < j n, are i.i.d., then (1.5) holds.

Corollaries 2 and 3 can be used to obtain limit theorems as k -4 ac for fixed n from the

limit theorems we establish as n -* - for fixed k. Corollaries 2 and 3 also allow us to relate

the interdeparture times of primary interest to us to associated sojourn times. The kh

interdeparture time from queue n is
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A(k, n) = D(k + 1, n) - D(k, n) (2.5)

with D(O, n) = 0, for k > 0 and n _ 1. The sojourn time of customer k at queue n is

S(k, n) = D(k, n) - D(k, n - 1) (2.6)

Corollary 4. Under the assumption of Corollary 3,

d
A (i,j) :0_< i_< k- 1, 1 < j< nI = S(j,i) : 1 5 j < n, 1 < i < k} (2.7)

Remarks. (2.1) Corollaries 3 and 4 immediately provide an analog of Theorem 1.1 for the

average sojourn time of the first n customers from the first LxnaJ queues after the first queue.

(2.2) The function mapping {V(i, j) : 1 < i <- k, 1 S j < n} into {D(i, j) : 1 < i 5 k,

1 < j < n } is obviously nondecreasing and convex, so that stochastic order relations for

service times carry over to departure times; see Stoyan (1083). The function is also Lipschitz,

i.e., for each path ir

, V 1(i (j) - V V (i, . V( )) 2t

and

max fID1(ij) -D2(i, j)1 (k+n- 1) max {1VI(i,j) -V 2 (i,j)}
II I I is k
1 Sj'n I S jSnP

so that there is model stability; see Whitt (1974).

3. The Functional Central Limit Theorem

We now apply (2.2) to show that {D(k, n)} satisfies a FCLT as n -4 c when {V(k, n)}

does. (We do not assume that {V(k, n)} is i.i.d. here.) For this purpose, let D[0, **) be the

space of right-continuous real-valued functions on the interval [0, o*) with limits from the left,

endowed with the usual Skorohod (1956) J, topology; see Ethier and Kurtz (1986) or
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Whitt (1980). Let D[0, **)" be the product space endowed with the product topology.

Let V, and D,, be random elements of D[0, ea) defined as follows:

Vx - (V 1,, V2n,....)

D. (Dj., D2 .... )
(3.1)

V,(t) =n- V(k,j) -nt], t:

D =(t) n-a(D(k, [nti) - nt) , t 0

for a > 0.

Theorem 3.1. If V. =z V in D[O, we)" as n - ** where V has continuous paths w.p.1, then

DR = D b in D[O,o)- as n -- c*, where D = f(V) with f :D[0,oc)" - D[0,*o)"

defined by

and

A W M) = sup {fk-1(S) + xk(t) - Xk(s)} (3.2)

= Xk(t) - inf {Xk(S) h- I(S)}
OSs~t

for all k > 2 andt a 0.

Proof. First, from (2.2) and (3.1) it is immediate that D1 s = V 1,. Next,

D,(t) = n-c(D(k, [nt] - nt)

= n - =  max {D(k - 1,1) + 7 V(k,j) I- j

n sp {D(k- 1. [ns]) - ns + y V(k,j) - n(t-s)

0 Sta T I~a

H sup {Dk1, (S) + V(t) - Vh(a) + n-V(k, [ns])}.

However, since Vb, =) Vk where 1'k has continuous paths,



sup n-' V(k, [ns]) 0 in D[0, co)
0SsS:

i.e., the maximum jump functional is continuous. Hence, by the convergence-together theorem

(Theorem 4.1 of Billingsley) and induction, (D ,, . . . , D A,) converges if

(f 1 (V.) ..... f,(V,)) converges. However, it is easy to see (e.g., by Section 6 of Whitt

(1980) and induction) that (fl .... fk) : D[O, oo)" -+ D[O, oo)k is continuous for each k.

Since we are using the product topology, that implies that f itself is continuous. Hence, the

desired convergence holds by the continuous mapping theorem (Theorem 5.1 of

Billingsley). m.

Remark (3.1) By the duality in Corollaries 2-4, Theorem 3.1 can also be regarded as a direct

consequence of previous heavy-traffic limit theorems for the sojourn times of the first LntJ

customers at the first k queues; see Iglehart and Whitt (1970), Harrison (1973), and

Reiman (1984). For the sojourn times, the case we consider corresponds to having the traffic

intensity at queue i be p, = 1 for all i. As in previous heavy-traffic limit theorems, we could

let the service-time distributions change in the limit. w

We can obtain a representation for the limit process 15 in Theorem 3.1 paralleling the

representation of D(k, n) as the maximal partial sum of the service times over all paths in

fl(k, n) in (2.4). For this purpose let Tk(t) be the set of nondecreasing (k + 1)-tuples

(to,t 1.... ,tk) with to = 0 and t k = t. The following is deduced from (3.2) by induction

on k.

Corollary. The limit process f) {Dk :k > 1} *f(,) a {fk(VI.... ,Vk) :k > I} can

be represented as

k
b(t) = sup{ V ['(ti) - Vi (t i-) I (to, tI, . . . tk) E Tk (t)} (3.3)

for all k a 1.
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The standard case has normalization exponent (x = 1/2 in (3.1) and service-time limit

process V being Brownian motion (BM), i.e., a vector of independent one-dimensional BMs.

The resulting limit process D for the departure process is then an infinite-dimensional reflected

Brownian motion (RBM) on the infinite-dimensional orthant. Such infinite-dimensional RBMs

can be constructed by extending corresponding k-dimensional RBMs on the k-dimensional

orthant; see p. 83 of Neveu (1965). The k-dimensional RBMs in turn coincide with those

considered by Harrison (1978), Harrison and Reiman (1981a,b), Reiman (1984) and Harrison

and Williams (1987a,b).

Let h = (BI, B 2 .... ) be a standard BM on D[, oo)-, by which we mean a vector of

independent standard (drift 0, diffusion coefficient 1) BMs. To obtain the standard limiting

case, we assume that the service times are i.i.d. However, in order to cover the case of a

general extemal arrival process, we exclude finitely many queues in the condition.

Theorem 3.2. If there exists a finite m such that {V(k, n) : k >- 1, n ? m} is i.i.d. with

E V(l, m) = I and Var V(I, m) = a2 < o, then the condition of Theorem 3.1 holds with

V = aB where B is a standard BM. Then D = of(B) for f in (3.2). The associated

interdeparture-time limit process a, defined by = b, . - bk, k > 1, and ao = Di, can

be represented as

k-l ,

a 0 = OBhl -Y, = Clk~ Y- A
i=O

k(t) = ak(t) - inf Yk(s) Y Yk(t) + Ik(t) , k Z l . (3.4)

Then [( A.... I- ,k), (1 .... ik)] are the unique pair of k-dimensional processes so that

j(t) = ki(t) + Ji(t), ai(t) > O, li(t) is nondecreasing with li(O) = 0 and

og O)di(S) = 0
forI ( M, ,)

for I <i <5 k and t >0. Moreover, for each k, ( i... )is a k-dimensional RBM as in
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Harrison and Reiman (1981a,b) generated by a zero-drift BM with covariance matrix E having

elements Iii = 2a 2 , 1 < i < k, = = -_ C12  1 s i T k- 1, and Z-i = 0

otherm e, and reflection matrix R = I- Q, where Qii+I = 1 for 1 < i _< k- I and

Q,j = 0 otherwise.

Proof By Theorems 3.2. 4.1 and 16.1 of Billingsley (1968), V, =:,. aB. By induction,

f(ax) = af(x) forf in (3.2). Hence, b = f(aB) = of(h). The representatio., (3.) is an

easy consequence of (3.2). The characterization of the pair [(A 1 .... Ak), (11 .... 1

follows from repeated application of the one-dimensional characterization of the reflection map

on p. 19 of Harrison (1985) (sometimes called Skorohod's lemma (1961)), and induction. The

characterization of (A1 , . . . , Ak) as an RBM follows by the arguments of Harrison (1978) and

Harrison and Reiman (1981ab) or directly from those papers, after exploiting the duality in

Corollaries 2-4 of Proposition 2.1. The RBM structure is easy to see in this case of an acyclic

network by writing (3.4) in differential form. Then

dAo = dhI
-. k-I

dak = dhk - k dA, + dk . (3.5)
i-O

By induction, (3.5) can be rewritten as

da 0 = d,

da, = dh, - d81 + d7,

d k = dB k+ - ik - dk-I + dik, k Z! 2 . (3.6)

This is the differential form for the RBM plus At; i.e., from (3.6) we obtain Z = X + YR as

in Harrison and Reiman (1981a,b), where Z = (k .. Ak), X is the BM with components

X, = i+ - hi and Y = (it, . . .). *

Remarks (3.2) Additional characterizations of the departure RBM such as the generator and a

generalized [t6's formula follow from Harrison and Reiman (1981a,b). Since the BMs Bi in
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the construction have zero drift, the departure RBM does not have a proper stationary

distribution.

(3.3) We do not know much about the joint distribution of (At ( 1), . . .

d
However, since AI = aB 2 - aB 1, A1 = a B I . Hence, I(l1) has a positive normal

distribution with E[IA(1)] =2a/49 and E[A 1 (1) 2 ] = 2a 2 . In Section 5 we show that

Ak(t) is stochastically decreasing in k and stochastically increasing in t.

4. The Strong Approximation

Under the assumptions of Theorem 3.2, we know that the interdeparture times of the kt

customer from the n queue are asymptotically of order n as n -- a* for any k. We now

want to say what happens if the customer index increases with n. For this purpose, we

establish a strong approximation result, drawing on KomIds, Major and Tusn?dy (1975, 1976);

see p. 107 of Csbrg6' and Rdvdsz (1981). We show that the error in the diffusion

approximation is 0((8 - Y) log n) when the largest customer index k is n . We state the

result below in an equivalent unnormalized form; to obtain the stated bound, divide through by

4.

Theorem 4.1. If, in addition to the assumption of Theorem 3.2, all service times are

independent and there exist positive constants K and X such that P(V(k, j) > x) 5 Ke- x  for

all k, j and x, then there exists a probability space supporting the departure times D(k, j) and

the limit process D = af(B) such that, for any a > 0,

max {JD(k, j) - J - 'In )k(jln)I = O(nalogn) a.s.
1 5 j S Xa

Remarks. (4.1) Theorem 4.1 establishes part of the second case of Theorem 1.1 with

0 < a < 1. To determine the order of magnitude of D(k, n) for k. = LxnJ for

o < a < 1, we have thus reduced the problem to determining how Dt(l) behaves as k - c.
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which we discuss in Section 7.

(4.2) In Theorem 4.1 we focus on the departure times, but a corresponding result holds for

the interdeparture times A(k, n) in (2.5) by applying the triangle inequality. In particular, as

an immediate consequence of Theorem 4.1,

max {IA(k, j) - n[Dkl(j/n) - D)k(j/n)]} = O(nalogn) a.s. (4.1)
I Sj< '.

Theorem 4.1 is proved by combining Lemmas 4.4 and 4.5 below. Lemmas 4.1-4.3 below

are used to prove Lemma 4.4.

Lemma 4.1. If { Uk : k -> 11 is a sequence of independent random variables and there exist

positive constants K and X such that P(Uk > x) 5 Ke- x ' for all x > 0, then for any a > 0

max {Uk = O(log n) a.s.
i k s LnaJ

Proof. For any x,,

P (, ax Wk I .]! 1-(1 -Ke Y
(ik <s k'Ln {

Hence, for x, = (a + 2) log nX,

P(A,,) z P( max {Uk} > a+2log n) 1- (1- Kn-("+2))n "

I S k s Ln'J

:5 1 - exp(log[(1 - Kn-("+2))n'

I I - exp(na log [1 - Kn-(a+2)])

- n a log (1 - Kn - (a +2) )

S 2Kn- 2 for n sufficiently large

x2  X3

using e-x 1 -x in the second to last step and log(1 -x) = -x- - - ... for
2 3

0 < x < I in the last step. Since j P(A,) < .*, P(A, infinitely often) = 0 by the
n-l
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Borel-Cantelli lemma. Hence, there are positive random variables X, and X2 such that

max {Uk} 1-- XI + X2 log n for all n - I a.s. U
i s ks LsJ

We now extend a strong approximation result of Komlds, Major and Tusnddy (1975, 1976),

p. 107 of Csbrg6" and Rdvdsz (1981).

Lemma 4.2. Under the assumptions of Theorem 4.1, there is a probability space supporting

independent standard BMs Bk and the service times so that

max V(k, j) - I - aik(l) O(loa ni) a. s.I k < L e J 1
1 :5 1:5i

Proof. The service times of all customers at all queues after the first m are i.i.d., but we do not

have identical distributions at earlier queues. However, by Lemma 4.1 and the assumption of

Theorem 4.1, without loss of generality it suffices to assume that all the service times are i.i.d.

To support half this claim, note that oBak(1) is normally distributed with mean 0 and variance

1o2, so that these variables satisfy the same tail condition imposed on the service times for

1 <1 ,5 m (possibly with different constants K and X). Hence, it suffices to assume that

{ V(k, j)1 is i.i.d., with the distribution of V(1, m), and we do. By Komlds, Major and

Tusnddy (1975, 1976), for each k there is a probability space containing a BM Bk such that

I
P{ max I V(k,j) - I- OBk()I > Clogn+x} < Kei-

for positive constants C, K and X depending on the distribution of V(1, m). Hence. us,. 3 a

product space, we can achieve
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P(,t ma ~ j) Iakl C log n +x}

! L C°=1x
_ 1 - (1 - Ke

As in Lemma 4.1, choose x, = (a + 2)log n/k to obtain P(A,) 5 2Kn- 2 for n sufficiently

large. By Borel-Cantel'i, P(A, infinitely often) = 0. Hence, there exist random variables

X I and X2 such that

max I V(k,]j) -1I-B ck(I) 5X, + X2 log n a.s. .
1 t, s Ln"J Lj-

For the next lemma, we specify some quantities associated with a real-valued function

defined on the positive integers, say y. Let

yl(n) = max y(k) and IlylI = IyiT(n) , n ? 1. (4.2)

The following elementary lemma can be viewed as a special case of Theorem 6.1 of

Whitt (1980).

Lemma 43. For all n Z 1, IlY1 -Yll. < 1YI - Y21l.

Let D" (k, n) be the following function of the limiting BM B,

D"(1,n) = aB(n)

D*(k, n) = CBk(n) - min {aBk(j) - D(k- 1,j)} (4.3)

= max {D ° (k- 1,j) + Bk(n) -CBk(j)}

for n 2- 1 and k > 2. Let e denote the identity function, i.e., e(t) = t, t > 0.

Lemma 4.4. Under the assumptions of Theorem 4.1, for any a > 0 there exists a probability
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space supporting the departure times D(k, j) and the process D" in (4.3) such that

max {ID(k, j) - j - DO(k, j)I} = O(n'log n) a.s.
I LnJIjSnR

Proof. Note that (4.3) is not quite the same function of aBk(n) as D(k, n) is of

'I

1. [V(k, j) - j] in (2.2). The exactly corresponding function is
J=--

D'(1, n) = iB (n)

D'(,., n) - max {D(k - 1,j) + aBk(n) - ah, - 1)} . (4.4)
I j n

However, by (2.2), (4.1), (4.2), (4.4) and Lemmas 4.1 and 4.3, there are random variables XI

and X2 such that

liD'(k, .)-D(k, ")11. <5 IID'(k - I.) - D'(k - 1,')11,l
+ max {IaBk(j) - aBkQ - 1)I}

-- IID'(k - 1,) - D'(k - 1,')II, + X, + X2 logn (4.5)

< k(XI + X2 1ogn) for k S LnaJ

where we have used the fact that aBk(j) - ahk(i - 1) are i.i.d. normal random variables in

the second to last step and induction in the last step. In particular, by Lemma 4.1,

max {IaBk(j)- GBk(j- 1)I} = O(logn) a.s.1 k f '
I S j : ja1ljSn

Hence,

max I{D'(k,j) -D*(k,j)} 5 na(X 1 + X 2 logn)I S* k,,'nJ

and it suffices to do the proof with D' in (4.4) instead of DO in (4.3). By an argument just

like (4.5), using Lemma 4.2 now, there exist a probability space supporting the processes D

and D' and finite random variables X 1 and X2 such that
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ID(l,') - e(.) - D'(1,) --- X + X2 logn a.s.

and
lID(k.) - e() - D'(k, ")11. < X, + X2 logn + jID(k - 1,-) - e(.) - D'(k - 1,)11., a.s.

for 1 S k :5 LnaJ. Hence,

jID(k, .) - e(.) - D'(k, ")11, -- LnaJ(xi + X 2 logn) = O(nalogn) a.s.

for all k < LnaJ. *

To prove our next lemma we want a continuous analog of (4.2). For a real-valued function

of a real-variable, say y, let

yr) = sup y(s) and 11Y11 = IyI(t), t >- 0 . (4.6)

Paralleling Lemma 4.3,

IYT - YT II, < IlYI - Y2 11, • (4.7)

Lemma 45. Foranya > 0

max {ID°(k, j) - 4nDk(J/n)I} = O(nalogn) a.s.

I <jSn

Proof. Note that

d
{ (t/n) :t > 0} = {)(t) :t > 0}

and
d

{D'(k, [t) : k Z 1, t a 0} = {Dk([t]) k 2 1, t > 01

Hence, what we want to show is

suptJ {IDk(t) - Dk([t])l = O(nalogn) a.s. (4.8)

OStSn

By (4.7),
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lik(.) - Dk([])(- !5. ([1)j+ IoBk(') - aBk(L)A. (4.9)

However,

max lla/Bk(') - aBk(['])I, 5 a max { sup {jBk(s) - Bk(j)I }} (4.10)
i sk S L"J i kS L'J I < s < j+I

I SjSn

_< X 1 + X 2 logn a.s.

for finite random variables X, and X2 , by Lemma 4.1. Combining (4.9) and (4.10) gives

(4.8). a

5. Stochastic Order for the Interdeparture Times

In this section we establish stochastic comparisons for the interdeparture times A(k, n) in

(2.5). We say that a random element X I is stochastically less than or equal to another random

element X2 , and write X, 5:, X-, if Eh(X 1 ) 5 Eh(X 2 ) for all nondecreasing bounded

measurable real-valued functions h; see Kamae, Krengel and O'Brien (1977). We are

d
interested in the case X, is an array of real-valued random variables. As before, let = denote

equality in distribution.

Theorem 5.]. Suppose that the service times V(k, n) are all mutually independent.

d
(a) IfV(k,n) = V(l.n) forallk > 1 andn > 1, then

{A(k+ i,n) :k> l,n> 1} 3!5{A(k,n) :k> l,n > I}

so that

V(1, n) <, A(k + 1, n) <, A(k, n) for k > 1 and n a 1

d

(b) If V(k, n) = V(k; 1) for all k > 1 and n > 1, then

{A(k, n)t:kaltn2}<{A(k,n+ 1):k> 1,n 1},

so that
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V(k + 1, 1) S, A (k, n) 5, A(k, n + 1) for k > 1 and n > I

Proof We do only part (a) because the proof of (b) is similar. We construct a process

.A(k + 1, n) k > 1, n > 1 } with the same finite-dimensional distributions as

IA(k + 1,n) k> 1, n 1} such that

A(k + 1, n) :5 A(k, n) a.s. for all k I1 and n > I . (5.1)

For this purpose, we use service times V(k, n) defined by V(k + 1, n) = V(k, n) for all k and

n. By our assumptions, {V(k, n) : k _ 1, n > I} is distributed the same as

V(k, n) :k 1, n > 1}. We define A(k, n) and 15(k, n) just like A(k, n) and D(k, n) but

using the service times V(k, n) instead of V(k, n).

By (2.1),

A(k, n) = max{D(k, n), D(k + 1, n - 1) + V(k + I, n) - D(k, n)

= [D(k + 1, n - 1) - D(k, n)]+ + V(k + 1, n) . (5.2)

Hence,

A(k + 1, n) = [D(k + 2, n - 1) - D(k + 1, n)] + + V(k, n) . (5.3)

From (5.2) and (5.3), we see that (5. 1) holds if

1)(k + 2, n - 1) - D(k + I. n) :5 D(k + 1, n - 1) - D(k, n) (5.4)

for all k 2! I and n 1. We establish (5.4) by induction on the sum of the indices (m = k + n

in D(k, n)). Note that
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D)(k + 2, n - 1) - D)(k + 1, n)=

max{D)(k + 1, n - 1), D)(k + 2, n - 2)1 + V(k + 2, n - 1)

- max{D)(k, n), 15(k + 1, n - 1) } + V(k + 1, nz)

= [15(k + 2, n - 2) - D)(k + 1, n - 1)]+ + V(k +i 2, n - 1)

- [D(k, n) - D(k + 1. n - 1)1+ + V(k + 1, n)

= [D(k + 2, n - 2) - D(k + 1, n - 1)]+ + V(k + 1, n - 1)

+ [D)(k + 1, n - 1) - D)(k, n)]- - V(k, n)

5 [D(k + 1, n - 2) -D(k, n - 1)1+ + V(k + 1, n - 1)

+ [D(k, n - 1) -D(k - 1, n)]- - V(k, n) a Z

by the induction hypothesis, where

Z = rnax{D(k + 1, n - 2), D(k, n - 1)) - D(k, n - 1) + V(k + 1, n - 1)

-max{D(k-l1, n), D(k, n - 1)) + D(k, n - 1) - V(k, n)

=D(k + 1, n - 1) - D(k, n).

To start the induction, note that, for n = I and any k,

15(k + 2, n - 1) - 15(k + 1, n) [)- (k + 1, 1)

- V(,1) + + V(k + 1, 1) - (l, 1) - V(l, 1) + - + V(k, 1)]

5 -D(k, 1) = D(k + 1, 0) - D(c, 1)

Hence, (5.4) is established and the proof is complete. s

Corollary 1. Under the conditions of Theorem 5.1(a), for each n 2: 1 there exists a proper

stochastic process [{a(k, n) k Z I1 with (k. n) ?.a V(lI, n) such that

{A(k +j, n) :k 2t I {P a(k, n) :k;! Il} in R- as]j-+.c

We can apply Theorem 5.1 to obtain a stochastic comparison for the limit process in

Theorem 3. 1. We actually focus on the associated interdeparture-time limit process

A t)= Dk+ I M - Dbk(t).

Corollary 2. Suppose that the service times V(k, n) are all independent and the FCLT

V, holds as required for Theoremn 3. 1.



- 23 -

d
(a) If V(k, n) = V(I, n) for all k >- 1 and n > 1, then

fA,+(t) :k> 1,t>-O} 20 sAk(t) :k> 1, t>0}

for all k > 1.

d

(b) If V(k, n) = V(k, 1) for all k > I and n > 1, then

{A,(t) :k>- 1,t2-O}-s5,Ak(t+u) 1,t0}

for all u > 0.

Proof. Use the fact that stochastic order is preserved under weak convergence. a

6. The Hydrodynamic Limit: The Case k. = O(n)

In this section we describe the behavior of D(k., n) (and, equivalently, D(n, k,)) when k,

is of order n. We first apply the hydrodynamic limit of Rost (1981) as discussed in

Section 4.2 of Srinivasan (1989) to treat the special case of exponential service times.

Theorem 6.1. If all the service times are i.i.d. with an exponential distribution having mean 1,

then

lim n-'D(LxnJ, n) = (1 4X-')2 a.s. for any x > 0.
PIu -. -

Proof. By Section 4.2 of Srinivasan (1989), the average queue length among the first LxtJ

queues at time t is asymptotically a.s. (2 - 'x)/'x as t - cc. Hence, for x > 1, the

average queue length among the first n and [.2 nJ queues at time Lx2 nJ are asymptotically a.s.

(2 - x- )/x - 1 = 2x - I and 1, respectively, as n --* c. Hence asymptotically a.s. there are

x 2 n + o(n) customers in queues 2 through x2 n and (2x - l)n + o(n) customers in queues 2

through n. Hence, asymptotically a.s. (x2 - 2x + l)n + o(n) customers have departed from

queue n, and the departure time for customer (x2 - 2x + 1)n from queue n is x 2 n + o(n).

Now do a change of variables, replacing (x - 1)2 by x.
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d
To treat x < 1, note that n - ' D(Lx2 nJ, n) = n - ' D(n, Lx 2 n j). Let n' = x2 n. Then

n - 1 D(n, Lx 2 nJ) = (x 2 /n)D(Ln/x 2 j, n) + o(l). From the previous argument,

(x 2 In)D(Ln/x 2 J, n) .- X2_L + ] = (X + 1)2 a.s. as n -

For x = 1. consider the average queue lengths among the first n and 4n queues, and reason

similarly. n

We now establish the existence of a limit for a general service-time distribution having an

exponential tail. First, recall that under the conditions of Theorem 4.1,

max.J{V(i,, j)I = 0(log n) a.s.

I SjSM

by Lemma 4.1, so that

D(LxnJ, n) < O(n log n) a.s.

However, we will show that D( Lxnj, n) is actually 0(n).

For this purpose, we exploit a stochastic comparison involving associated random variables;

see p. 29 of Barlow and Proschan (1975). Recall that a family of random variables are

associated if all pairs of nondecreasing bounded real-valued functions of the random variables

have nonnegative correlation.

Lemma 6.1. If the service times {V(i, j) : 1 i < k, I S j : n} are independent or just

associated, then the partial sums I V(i, j) for the [k + n 2) paths x in fl(k, n) are
(ij) a X

associated random variables.

Proof. The partial sums are all nondecreasing functions of the kn service times. m

Theorem 6.2. If the service times V(i, j) are all independent, then
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D(k, n) :5,t max{S, : it e fI(k, n) }

where S,, it n H(k, n), are mutually independent with

d
SR = . V(i, j)

(i, j) ,7

for each path it.

Proof. Apply Theorem 3.2, p. 33 of Barlow and Proschan (1975). a

We now use this stochastic bound to develop a bound and heuristic estimate for

lrm n-'D(Lxn, nJ) for a general service-time distribution. We call this the path-
,: -+-

independence bound. We also use this bound to show that the limit exists.

Theorem 6.3. If all the service times are i.i.d. with EV(1, 1) = 1 and there exist positive

constants K and X such that P(V(1, 1) > x) :5 Ke-Xz for all x > 0, then there exists a

deterministic strictly increasing concave function y(x) with y(x) 1, 'y(x + y) - y(x) -: y

and y(x) = xy(x-) for all x, y > 0 such that

lim n -D(LnxJ, n) = y(x) a.s. (6.1)
R -4 -

and

rn Eln-I'D(LnxJ, n) - 'y(x)l = 0 (6.2)
AI - -

for all x > 0. Moreover,

I + xE(max{V(1, 2), V(2, 1)1) > 1 + x, 0 < x < 1
y(x) > (6.3)

+ E(max{V(1, 2), V(2, 1)}) 1 + x, 1 < x

and

y(x) < (1 + a')(I + x) , (6.4)
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where

a - a°(x) = inf{a > 0:(I +x)h(a) > (1I +x) log(1 +x)-xlogx} (6.5)

and

h(a) = sup {Oa - log Eee t (r t .M)l} . (6.6)

Proof. We first establish the upper bound in (6.4). Using Stirling's formula, p. 52 of

Feller (1968), we see that the number of paths in fl( LxnJ, n) is O(x, n) = e' *(x) 0(n), where

W(x) = (I + x) log (I +x) - xlog x.

Let 7t,, be a path in FI( LxnJ, n) and let S , be the partial sum of all service times on path x,.

By the Cramdr (1938)-Chemoff (1952) theorem,

P(S. > (1 + a)(1 + x)n) = e - + x) n(a) + o(a)

where h is defined in (6.6). Using the path-independence bound established in Theorem 6.2,

we have

P(D(Lxnj, n) > (1 + a)(l + x)n) < 1 - (1 - e- n +x)h(a)+o(,))*(z.,) (6.7)

The critical case a = a* (x) given by (6.5). If h(a) > h(a*), then the probability in (7.7)

converges to 0, whereas if h(a) < h(a*), then the probability converges to 1. In particular,

for anya > a*,

i P(D(LxnJ, n) > (I + a)(1 + x)n) < @0,
nII

so that we can apply Borel-Cantelli to deduce that

Timn n-D(LxnJ, n) : (1 + a)(l + x) a.s.

Hence, we have the claimed upper bound in (6.4).
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Now we apply the subadditive ergodic theorem on p. 277 of Liggett (1985) to establish the

existence of the limit. We first consider the limit of n D(kn, In) for k and I integer. We let

Xo'o = 0,

-Xo,. = D(kn, ln) - V(l, 1)

and -Xm,n be -Xo,n-m applied to the shifted service times V'(i, j) = V(i + kin, j + im);

e.g., fork = I = 1,X,.-,, = 0 and -X. 2.,n = V(n, n) + max{V(n-1, n), V(n, n-1)}.

With this definition, X is subadditive, i.e., Xo.,, < XO,m + Xm,,, for 0 < m < n. Moreover, X

satisfies the other conditions of the subadditive ergodic theorem; in particular,

{X(.-,),, : n > 1} is a stationary process for each k,

d
{Xm,m+k : k > 0} = {Xm+1,m+k+ l : k 0} for each m, and E(Xo1 ) < o. Hence,

n-D(kn, In) has a deterministic limit 11(k, 1) in the sense of (6.1) and (6.2) for all integers k

and 1. When n is a multiple of 1,

- D  " n] = n k-, 1. ?1 (k] 1) as n -+ oo a.s.

More generally,

D ILn/Ij, tLn/liJ < D(Lkn/iJ, n) < D i(Ln/lIJ + 1), I([n/l] + 1)

where

n-1 D tLn/Ij, tLn/Ij ,n1 Ct 417 k )
= Ln n D(kLn/IJ) ,lLn/Lj) -

and
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n1D ik L/J+i, (nI 1 Ln/lJ +1 I 1 D(k(Ln/lJ + 1), l(Ln/IJ + 1))
nLn/IJ + In-' D, .. I(Ln/lJ + 1), I(Ln/lJ + 1)1 = n L/J+ 1 ~(nI ),IL~ )

lr (k,1) as n -- o a.s.

Hence, (6.1) holds for all positive rational x. A similar argument applies to (6.2).

To treat irrational x, we apply Theorem 5.1a to deduce that y(x + y) - y(x) is decreasing

in x through rational x for each rational y. Hence, y is nondecreasing and concave restricted to

the rationals. Since y is nondecreasing overall, y is nondecreasing and concave, and thus

continuous, overall. Hence, the limits (6.1) and (6.2) extend to irrational x. (Note that

n-I D( Lnxj, n) is sandwiched between corresponding averages for rationals that converge.

This implies the existence of convergent subsequences as n -* cc. The continuity of y on the

rationals then implies that all limits of convergent subsequences converge to a common limit,

implying convergence for the full sequence.)

To see that y(x + y) - y(x) > y, so that y is strictly increasing, use the fact that

i = L(x + Y),d
D( L(x + y)nJ, n) _ D(LxnJ, n) + 1 V(i, n)

i- LDJ + 1

By considering only paths through (2k, 2k) for all k, 1 5 k < min{xn, n), we easily

obtain the lower bound in (6.3). To see that y(x) 2, 1 for all x > 0, note that, for all x,

d
D(LxnJ, n) > D(I, n) for all n sufficiently large. Since D(k, n) = D(n,k) for all n and k,

we see that

y(x) = lir n-D(LxnJ, n) =Um LxnJ 1 D(LxnJLxnJ/x)

= lim LxnJ 1I
T t pah ndepd bo(LxnJx, LnJ) = x - h)  t s

To illustrate the path-independence bound, in (6.4)-(6.6) suppose that the service times
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have an exponential distribution as in Theorem 6.1. Then

EeeCV(l, 1) - 1 = (1 - 0)-1e -  and h(a) = a - log(l + a) . (6.8)

From (6.5) and (6.8), we obtain a* by solving

(I + x)[a - log(1 + a)] = (1 + x) log (1 + x) - x log x,

which for the case x = I is

a* -log(1 +a*) = log2,

yielding a* = 1.68 and li-n1D(n, n) 5 5.36. From Theorem 6.1 we see that this is

indeed an upper bound, which seems to be not a terrible approximation. Evidently, there is

enough dependence among the paths to reduce this estimate by a factor of 0.746.

Example 6.1. It is possible that the infimum in (6.5) is not attained as an equality. For

example, suppose that V(i, j) is Bernoulli, assuming the values 0 and 2 each with probability

1/2. Then h(a) = [(I + a) log (I + a) + (I - a) log (I - a)1/2, 0 < a< 1, and

h(a) = oo for a > 1. For x = 1, lim h(a) = log 2, so that a*(l) = 1, which yields
a -1-

y(l) :5 4.

7. More Properties of the Departure RBM

We established the strong approximation in Section 4 in order to deduce more about the

depamm times of customer k. from queue n when k. -+ oo as n - ao. We now establish a

limit for the way the departure RBM components Dt(l) grow as k -- a. that enables us to

conclude that the average of the first Lxnaj interdeparture times from queue n after the first

departure is of order n(I - a)12 for any x > 0 and any a satisfying 0 < a < 1. The limit is

obtained by applying the subadditive ergodic theorem once more.

Theorem 7.1. Let D = f(B). Then there exists a deterministic nondecreasing concave
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function j(x) such that

lim n- D L.,j(n) = (x) a.s. (7.1)

so that

n-DLj(1) = j(x) as n-** (7.2)

for each x > 0.

Proof. As in the proof of Theorem 6.3, we apply the subadditive ergodic theorem on p. 277 of

Liggett (1985). We first establish the limit for n-lb j,(kn) for j and k integer. We let

-Xo. = D,(n) and -X,. be -Xo.,-m applied to the shifted process

B (t) = Bi+.(t + &n) - Bi+k(Im). With this definition, X is subadditive, i.e.,

Xon < Xo,, + X,.,. for 0 < m : n, and X satisfies the other conditions of the subadditive

ergodic theorem, except possibly for the bound. To establish the bound, we consider a related

discrete problem. We consider the kn x In integer lattice. We associate with the point (i j) in

this lattice the random variable

W(i, j) = sp j Bi(t) - Bj(j - 1)l . (7.3)

It is easy to see that

Dj,,(kn) < sup { W(ij)} + W(jn,kn) . (7.4)
X1 6 fl(jn,bs) (ij) g

For each path it, the random variables W(i, j) for (i, j) e ic are i.i.d. Moreover, for different

paths, the partial sums are associated. Hence, we have a path-independence bound for the right

side rf (7.4) paralleling Theorem 6.2. Using the known tail behavior of W(i, j) in (7.3), we

have the required bound for the subadditive ergodic theorem. Hence, n- 1 ,, (kn) converges

a.s to a prover limit as n -+ w. As in the proof of Theorem 6.3, we use this result to deduce

that (7.1) holds for each rational x. We then apply Corollary 2 to Theorem 5 to deduce that

L4
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'(x + y) - (x) is decreasing in x through rational x for each rational y. Hence j' is

nondecreasing and concave restricted to the rationals. Since j, is nondecreasing overall, j' is

nondecreasing and concave overall. Hence, (7.1) extends to irrational x. Since
d

nV. ) LxnJ(1) = n-D!,Lj(n) for all n, we obtain (7.2) directly from (7.1). n

We now apply Theorem 7.1 to obtain a limit for the average of the first LnoJ departure

times for 0 < a < 1. The following shows that this average is asymptotically of order

(I - a)/2

Theorem 7.2. Under the assumptions of Theorem 4. 1,

D(Lxnaj, n) - D(, n)

n( + a)/2(x)

for j,(x) in Theorem 7.1 and 0 < a < 1.

Proof. Note that

D(Lxnaj, n) - D(, n) +[fD L.j(1) +

, - n.->,2 n (1 +a) /

D( Lxn' , n) (O2 - n . (7.5)

By (7.2) in Theorem 7.1, the first term on the right in (7.5) converges in probability to j'(x).

By Theorem 4.1, the second term on the right converges in probability to 0. By (1.1), the third

term on the right converges to 0. n

8. Concluding Remarks

There are several stones left unturned. First, it would be nice to identify the hydrodynamic

limit y(x) in (6.1) for non-exponential service-time distributions. It would be nice to determine

how this limit depends on the service-time distribution. We have establisIhed that there is an

invariance principle for a < 1. We conjecture that the limit when a = I depends on the
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service-time distribution beyond its first two moments. It would also be nice to establish a

refined distributional limit, i.e., a weak convergence limit for n-"(D(LxnJ, n) - y(x)n) as

nl -4 00.

Second, it would be nice to know more about the departure RBM f(B) (Section 3). In

Remark 3.3 we noted that AI = b2 - b 1 is a reflecting BM, so that E[A1(1)] = 2o/V-.

Moreover, by Theorem 5.2, Ak(1) is stochastically decreasing as k increases. However, it

would be nice to know the joint distribution, or at least the means, of (A 1(1), .... -. (1)).

Moreover, it would be nice to know the hydrodynamic limit '(x) for the Departure RBM in

(7.1) and (7.2). By Theorem 7.2, it determines the limit in Theorem 1.1 for 0 < a < 1.

Finally, an old open problem is the limiting behavior of the stationary departure process

from n queues as n -. 00. Here we assume that the service times V(i, j) are i.i.d. for i a 1

and j ? 2 while the service times V(i, 1) are i.i.d. (or just stationary and ergodic) with

E V(l, 1) > E V(l, 2), so that the departure process from the first queue corresponds to an

external arrival process with mean interarrival time greater than the subsequence mean service

times. For the case in which V(1, 2) is exponentially distributed, but V(1, 1) is not, it is

widely believed that the stationary departure process from queue n is asymptotically Poisson as

n -+ c. A corresponding result for infinite-server queues was established by Vere-

Jones (1968).
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